10 класс, вариант 37101, задача 1

В теории чисел натуральное число называется В-гладким, если все его простые делители не превосходят В. Разработайте алгоритм проверки чисел в диапазоне от Р до Q на Вгладкость.

Решение (схема). Строится массив простых чисел. Далее для каждого числа п из диапазона от Р до О проверяем, являются ли простые числа, большие В, делителями числа п. Если это так, то число не является В-гладким. В противном случае число является В-гладким.

10 класс, вариант 37101, задача 2

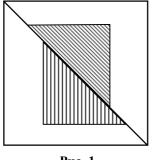
Марина и Светлана разговаривают по телефону и хотят выбрать секретное число так, чтобы оно осталось неизвестным постороннему, возможно подслушивающему их разговор. Для этого Марина подбирает натуральное число $a \le 256$ такое, что числа $R_{257}(a^i)$ различны при всех $1 \le i \le 256$ и $R_{257}(a^{256}) = 1$, где $R_{257}(t)$ – остаток от деления числа t на 257. Затем Марина загадывает натуральное число $x \le 256$, а Светлана – натуральное число $y \le 256$. После этого Марина сообщает числа a и $R_{257}(a^x)$ Светлане, а Светлана ей – число $R_{257}(a^y)$. Теперь они обе вычисляют их секретное число $R_{257}(a^{xy})$. Составьте алгоритм для нахождения этого секретного числа, если известно, что $R_{257}(a^x) = 9$, $R_{257}(a^y) = 256$.

Решение (схема).

Вводим значение a и проверяем условия $R_{257}(a^1) \neq R_{257}(a^2) \neq ... \neq R_{257}(a^{256})$ и $R_{257}(a^{256}) = 1$. Если условия не выполняются, то вводим новое значение а. Генерируем случайное значение x (1 < x ≤ 256), для которого $R_{257}(a^x)$ = 9, и случайное значение y (1 < y ≤ 256), для которого $R_{257}(a^y) = 256$. Вычисляем $k_1 = R_{257}(256^x)$ и $k_2 = R_{257}(9^y)$. Проверяем $k_1 = k_2$ и выводим $k = k_1$.

10 класс, вариант 37101, задача 3

По квадратной матрице А размера n построить матрицу В того же размера, где b_{ii} определяется следующим образом. Через a_{ij} проведём в A линии, параллельные сторонам прямоугольника до пересечения с главной диагональю (главная диагональ квадратной матрицы – диагональ, которая проходит через верхний левый и нижний правый углы); b_{ij} определяется как минимум среди элементов треугольника в А. На рис. 1 треугольник, заштрихованный косыми линиями, соответствует случаю, когда a_{ii} находится выше диагонали, а треугольник, заштрихованный вертикальными линиями, соответствует случаю, когда a_{ii} находится ниже главной диагонали.



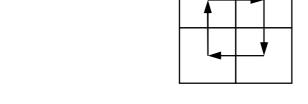


Рис. 1

Рис. 2

Решение (схема). Рассмотрим отдельно случаи, когда элемент a_{ij} находится выше главной диагонали, на главной диагонали и ниже главной диагонали. Для случая выше главной диагонали b_{ij} определяется как минимум среди элементов a_{kl} , $k=i,...,j,\ l=k,...,j$. Случай, когда a_{ii} находится на главной диагонали, является вырожденным, треугольник состоит из одного элемента a_{ij} , который в данном случае и является минимумом. Для случая ниже главной диагонали b_{ij} определяется как минимум среди элементов a_{kl} , k=j,...,i,l=j,...,k.

10 класс, вариант 37101, задача 4

На листе бумаги нарисована квадратная таблица размера 2n. В клетках написаны различные целые числа. Необходимо получить новую таблицу, переставляя блоки размера $n \times n$ в соответствии с рис. 2.

Решение (схема). Перебираем элементы $a_{i,j}$, i=1,...,n, j=1,...,n и переставляем сразу 4 элемента по схеме $c \leftarrow a_{i,j} \leftarrow a_{i+n,j} \leftarrow a_{i+n,j+n} \leftarrow a_{i,j+n} \leftarrow c$.

10 класс, вариант 37101, задача 5

В теории чисел задача Знама спрашивает, какие множества k целых чисел имеют свойство, что каждое целое в множестве является собственным делителем произведения других целых чисел в множестве плюс 1. То есть, если дано число k, какие существуют множества целых чисел $\{n_1, ..., n_k\}$ таких, что для любого i число n_i делит, но не равно

 $\left(\prod_{j\neq i}^k n_j + 1\right)$. Разработайте алгоритм нахождения числа решений задачи Знама для k в

диапазоне от Р до Q. Принять верхнюю границу $n_i = 10^{11}$.

Решение (схема). Задача решается перебором всех вариантов.