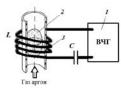
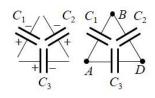
ЗАДАНИЕ ПО ФИЗИКЕ ВАРИАНТ 7111 для 11 классов

- 1. Учащиеся Лицея №1502 при МЭИ выступали на научной конференции школьников с докладом о результатах своей работы. Они исследовали отражательные свойства белого материала, из которого изготавливаются экраны в кинотеатрах. Учащиеся обнаружили, что свойства материала оптимизированы для минимизации потерь при отражении света. После доклада председатель жюри конференции задал лицеистам вопрос: «Что мешает сделать экран зеркальным, ведь при этом потери света будут заведомо меньше?». Учащиеся получили диплом 1 степени, потому что ответили на вопрос совершенно правильно. Что ответили школьники председателю жюри? Как вы объясните их ответ?
- **2.** Корпус подводной лаборатории состоит из двух полусфер верхней и нижней. Определите силу давления на внешнюю поверхность нижней полусферы, если её радиус равен R, а самая верхняя точка лаборатории расположена на глубине 2R метров. Плотность морской воды в районе лаборатории равна ρ , атмосферное давление нормальное.
- **3.** Одноатомный идеальный газ совершает два процесса. В процессе 1-2 газ расширяется втрое по закону $p = \alpha \cdot \sin\left(\frac{\pi V}{6V_1}\right)$, где p давление, V объём, V_1 первоначальный объём, α некоторая


постоянная. В процессе 2-3 газ продолжает расширяться по закону
$$p = \alpha \cdot \left(1 - \cos\left(\frac{\pi V}{2V_2}\right)\right)$$
 до

объема 4 V_1 . Чему равна внутренняя энергия газа U_3 в конце процесса, если в процессе 1-2 она увеличилась на 50 Дж?

- **4.** Силовые линии однородного электростатического поля направлены вертикально вверх. Электрон начинает двигаться в этом поле так, что его начальная скорость составляет угол $\alpha = 45^{\circ}$ с напряжённостью поля. Определите отношение минимального радиуса ρ кривизны траектории электрона к его максимальному смещению L в направлении силовой линии.
- **5.** Абсолютно гибкая однородная цепочка висит вертикально над поверхностью стола, подвешенная за верхний конец. Нижний конец цепочки касается стола. Верхний конец цепочки отпускают. Докажите, что в любой момент времени падения цепочки сила её давления на стол равна утроенному весу лежащей на столе части цепочки.
- **6.** Контур состоит из катушки индуктивностью L и сопротивлением R и конденсатора электроемкостью C. Какую мощность должен потреблять контур от внешней сети, чтобы в нем поддерживались незатухающие колебания, при которых максимальное напряжение на конденсаторе равно U_0 .
- **7.** Кубик с ребром l начинает скользить по горизонтальной доске с некоторой начальной скоростью. Коэффициент трения кубика о доску равен μ . На расстоянии S от точки начала скольжения из доски выступает маленький гвоздик. Какой должна быть минимальная начальная скорость кубика, чтобы при ударе о гвоздик кубик перевернулся? Кинетическая энергия кубика перед ударом о гвоздик в n раз больше механической энергии, потерянной кубиком при ударе.


ЗАДАНИЕ ПО ФИЗИКЕ ВАРИАНТ 7112 для 11 классов

1. Учащиеся Лицея №1502 при МЭИ во время своей летней практики выполняли научную работу в лаборатории физики плазмы на кафедре Общей физики и ядерного синтеза. Они исследовали характеристики газового разряда, создаваемого в индукционном плазмотроне. В этом устройстве (см. рис.) плазма возникает внутри трубки, помещенной в магнитную катушку, которая является элементом колебательного контура, подключенного к высокочастотному генератору. Школьники обнаружили изменение индукции магнитного поля в центре магнитной катушки, подключенной к работающему генератору, после зажигания высокочастотного разряда в аргоне. Как изменилась индукция магнитного поля? Укажите, какими физическими явлениями и закономерностями вызвано это изменение.

1 — ВЧ-генератор; 2 — разряд; 3 — магнитная катушка

- ${f 2.}$ По наклонной плоскости берегового водосброса на гидроэлектростанции стекает широкий поток воды. На расстоянии ${f L}$ от начала водосброса глубина потока уменьшается в 4 раза. Определите, на каком расстоянии от начала водосброса глубина потока была в 2 раза больше. Трением воды о стенки и дно водосброса можно пренебречь.
- **3.**Идеальный одноатомный газ в количестве v=2 моля, совершает процесс 1-2-3, состоящий из изобарного расширения (1-2) и изохорного нагревания (2-3). Известно, что $p_3=\frac{31}{21}\,p_1$ и $V_3=\frac{7}{5}V_1$. Если осуществить процесс изотермического расширения газа 1-4, передав ему то же количество теплоты, что и в процессе 1-2-3, то он совершит работу $A_{14}=1200R$ (R- универсальная газовая постоянная). Найдите исходную температуру газа T_1 .
- **4.** На горизонтальном столе лежат кубик и чертежный треугольник. Треугольник своей гипотенузой касается одной из боковых граней кубика. Треугольник начинают двигать поступательно по столу с постоянной скоростью u, перпендикулярной катету, образующему с гипотенузой угол α =45°, толкая кубик. Отношение скорости треугольника к скорости кубика $u/v = \sqrt{3/2}$. Найдите коэффициент трения между кубиком и треугольником.
- **5.** Автомобиль с мощным двигателем и полным приводом движется равномерно по скользкой дороге со скоростью V. Водитель нажимает педаль акселератора, при этом скорость вращения колес практически мгновенно возрастает в k раз (k>1) и далее остаётся постоянной. Количество теплоты, выделившееся из-за трения шин о дорогу при разгоне автомобиля, равно Q. Найдите массу автомобиля. Сопротивлением воздуха пренебрегите. Коэффициент трения между шинами и дорогой считайте постоянным.
- **6.** Из куска стекла изготовлены три тонкие линзы одного и того же диаметра. Если сложить линзы вплотную друг к другу без воздушных зазоров, то они образуют плоскопараллельную пластину. Диаметр получившейся пластины равен диаметру линз, оптические оси линз совпадают. Известно, что фокусное расстояние линз 1 и 2, сложенных вместе, равно F_{12} = 10 см, а линз 2 и 3, сложенных вместе, равно F_{23} = =2,5 см. Определите фокусное расстояние каждой линзы; нарисуйте эту систему линз и укажите, какие из этих линз собирающие, а какие рассеивающие.
- **7.** Три конденсатора C_1 , C_2 и C_3 одинаковой ёмкости зарядили до напряжений U_1 =1 В, U_2 =2 В и U_3 =3 В соответственно и затем соединили «треугольником» (см. рисунок). Найдите разность потенциалов ϕ_A ϕ_B между точками A и B.

